2025-05-26 18:47:21 +02:00

341 lines
13 KiB
Python

import json
import logging
import base64
from datetime import datetime
from typing import Dict, Any, Optional
import functions_framework
import vertexai
from vertexai.vision_models import MultiModalEmbeddingModel, Image as VertexImage
from google.cloud import firestore
from google.cloud import storage
from qdrant_client import QdrantClient
from qdrant_client.http import models
from qdrant_client.http.models import Distance, VectorParams, PointStruct
import numpy as np
from PIL import Image
import io
import os
import uuid
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Vertex AI
PROJECT_ID = os.environ.get('GOOGLE_CLOUD_PROJECT') or os.environ.get('GCP_PROJECT')
LOCATION = os.environ.get('VERTEX_AI_LOCATION', 'us-central1')
if PROJECT_ID:
vertexai.init(project=PROJECT_ID, location=LOCATION)
logger.info(f"Initialized Vertex AI with project {PROJECT_ID} in location {LOCATION}")
else:
logger.error("PROJECT_ID not found in environment variables")
# Get Firestore configuration from environment variables
FIRESTORE_PROJECT_ID = os.environ.get('FIRESTORE_PROJECT_ID')
FIRESTORE_DATABASE_NAME = os.environ.get('FIRESTORE_DATABASE_NAME', '(default)')
# Initialize Firestore client with correct project and database
if FIRESTORE_PROJECT_ID:
firestore_client = firestore.Client(project=FIRESTORE_PROJECT_ID, database=FIRESTORE_DATABASE_NAME)
else:
firestore_client = firestore.Client(database=FIRESTORE_DATABASE_NAME)
storage_client = storage.Client()
# Get bucket name from environment variable
GCS_BUCKET_NAME = os.environ.get('GCS_BUCKET_NAME', 'contoso-images')
# Initialize Qdrant
QDRANT_HOST = os.environ.get('QDRANT_HOST', 'localhost')
QDRANT_PORT = int(os.environ.get('QDRANT_PORT', '6333'))
QDRANT_API_KEY = os.environ.get('QDRANT_API_KEY')
QDRANT_COLLECTION = os.environ.get('QDRANT_COLLECTION', 'image_vectors')
QDRANT_HTTPS = os.environ.get('QDRANT_HTTPS', 'false').lower() == 'true'
try:
qdrant_client = QdrantClient(
host=QDRANT_HOST,
port=QDRANT_PORT,
api_key=QDRANT_API_KEY,
https=QDRANT_HTTPS
)
# Ensure collection exists
try:
collections = qdrant_client.get_collections()
collection_names = [col.name for col in collections.collections]
if QDRANT_COLLECTION not in collection_names:
logger.info(f"Creating Qdrant collection: {QDRANT_COLLECTION}")
qdrant_client.create_collection(
collection_name=QDRANT_COLLECTION,
vectors_config=VectorParams(
size=1408, # Vertex AI multimodal embedding size
distance=Distance.COSINE
)
)
logger.info(f"Collection {QDRANT_COLLECTION} created successfully")
else:
logger.info(f"Collection {QDRANT_COLLECTION} already exists")
except Exception as e:
logger.error(f"Error ensuring Qdrant collection exists: {e}")
qdrant_client = None
except Exception as e:
logger.error(f"Failed to initialize Qdrant client: {e}")
qdrant_client = None
if not qdrant_client:
logger.warning("Qdrant not configured, embeddings will not be stored")
@functions_framework.cloud_event
def process_image_embedding(cloud_event):
"""
Cloud Function triggered by Pub/Sub to process image embeddings
"""
try:
# Decode the Pub/Sub message
message_data = base64.b64decode(cloud_event.data["message"]["data"]).decode('utf-8')
message = json.loads(message_data)
logger.info(f"Processing image embedding task: {message}")
# Extract task data
image_id = message.get('image_id')
storage_path = message.get('storage_path')
team_id = message.get('team_id')
retry_count = message.get('retry_count', 0)
if not all([image_id, storage_path, team_id]):
logger.error(f"Missing required fields in message: {message}")
return
# Update image status to processing
update_image_status(image_id, 'processing', retry_count)
# Process the image
success = process_image(image_id, storage_path, team_id, retry_count)
if success:
logger.info(f"Successfully processed image {image_id}")
update_image_status(image_id, 'success', retry_count)
else:
logger.error(f"Failed to process image {image_id}")
update_image_status(image_id, 'failed', retry_count, "Processing failed")
# Retry logic is handled by Pub/Sub retry policy
# The function will be retried automatically up to 3 times
except Exception as e:
logger.error(f"Error in process_image_embedding: {e}")
# Extract image_id if possible for status update
try:
message_data = base64.b64decode(cloud_event.data["message"]["data"]).decode('utf-8')
message = json.loads(message_data)
image_id = message.get('image_id')
retry_count = message.get('retry_count', 0)
if image_id:
update_image_status(image_id, 'failed', retry_count, str(e))
except:
pass
raise e
def process_image(image_id: str, storage_path: str, team_id: str, retry_count: int) -> bool:
"""
Process a single image to generate embeddings
Args:
image_id: The ID of the image to process
storage_path: The GCS path of the image
team_id: The team ID that owns the image
retry_count: Current retry count
Returns:
True if processing was successful, False otherwise
"""
try:
# Download image from Cloud Storage
# The storage_path is just the path within the bucket (e.g., "team_id/filename.jpg")
# The bucket name comes from the environment variable
bucket = storage_client.bucket(GCS_BUCKET_NAME)
blob = bucket.blob(storage_path)
if not blob.exists():
logger.error(f"Image not found in storage: {GCS_BUCKET_NAME}/{storage_path}")
return False
# Download image data
image_data = blob.download_as_bytes()
# Generate embeddings using Vertex AI
embeddings = generate_image_embeddings(image_data)
if embeddings is None:
logger.error(f"Failed to generate embeddings for image {image_id}")
return False
# Store embeddings in Qdrant
if qdrant_client:
point_id = str(uuid.uuid4())
# Prepare metadata
metadata = {
'image_id': image_id,
'team_id': team_id,
'storage_path': storage_path,
'created_at': datetime.utcnow().isoformat(),
'model': 'vertex-ai-multimodal'
}
# Create point for Qdrant
point = PointStruct(
id=point_id,
vector=embeddings.tolist(),
payload=metadata
)
# Upsert to Qdrant
qdrant_client.upsert(
collection_name=QDRANT_COLLECTION,
points=[point]
)
logger.info(f"Stored embeddings for image {image_id} in Qdrant with point ID {point_id}")
# Update Firestore with embedding info
update_image_embedding_info(image_id, point_id, 'vertex-ai-multimodal')
return True
except Exception as e:
logger.error(f"Error processing image {image_id}: {e}")
return False
def generate_image_embeddings(image_data: bytes) -> Optional[np.ndarray]:
"""
Generate image embeddings using Vertex AI multimodal embedding model
Args:
image_data: Binary image data
Returns:
Numpy array of embeddings or None if failed
"""
try:
# Basic validation of image data
if not image_data or len(image_data) == 0:
logger.error("Empty image data provided")
return None
# Check image size (limit to 10MB)
if len(image_data) > 10 * 1024 * 1024:
logger.warning(f"Large image detected: {len(image_data)} bytes")
# Validate image format using PIL
try:
pil_image = Image.open(io.BytesIO(image_data))
logger.info(f"Image format: {pil_image.format}, size: {pil_image.size}, mode: {pil_image.mode}")
# Check for blank/empty images
if pil_image.size[0] == 0 or pil_image.size[1] == 0:
logger.error("Image has zero dimensions")
return None
except Exception as e:
logger.error(f"Invalid image format: {e}")
return None
# Create Vertex AI image object
vertex_image = VertexImage(image_data)
# Use multimodal embedding model to get embeddings
model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
embeddings = model.get_embeddings(image=vertex_image)
if embeddings is None or embeddings.image_embedding is None:
logger.error("Failed to generate embeddings - no image embedding returned")
return None
# Get the image embedding vector
embedding_vector = embeddings.image_embedding
# Convert to numpy array - DO NOT normalize Vertex AI embeddings
# This must match the behavior in the main embedding service
embeddings_array = np.array(embedding_vector, dtype=np.float32)
# Validate embedding quality
if np.any(np.isnan(embeddings_array)) or np.any(np.isinf(embeddings_array)):
logger.error("Generated embeddings contain NaN or infinite values")
return None
# Check if embedding is mostly zeros (might indicate processing issue)
zero_ratio = np.sum(embeddings_array == 0.0) / len(embeddings_array)
if zero_ratio > 0.9:
logger.warning(f"Embedding is {zero_ratio*100:.1f}% zeros - might indicate processing issue")
logger.info(f"Generated embeddings with shape: {embeddings_array.shape}")
logger.info(f"Embedding stats - min: {embeddings_array.min():.6f}, max: {embeddings_array.max():.6f}, norm: {np.linalg.norm(embeddings_array):.6f}")
return embeddings_array
except Exception as e:
logger.error(f"Error generating embeddings: {e}")
return None
def update_image_status(image_id: str, status: str, retry_count: int, error_message: str = None):
"""
Update the image embedding status in Firestore
Args:
image_id: The ID of the image
status: The new status (processing, success, failed)
retry_count: Current retry count
error_message: Error message if status is failed
"""
try:
doc_ref = firestore_client.collection('images').document(image_id)
update_data = {
'embedding_status': status,
'embedding_retry_count': retry_count,
'embedding_last_attempt': datetime.utcnow()
}
if error_message:
update_data['embedding_error'] = error_message
if status == 'success':
update_data['has_embedding'] = True
update_data['embedding_error'] = None # Clear any previous error
doc_ref.update(update_data)
logger.info(f"Updated image {image_id} status to {status}")
except Exception as e:
logger.error(f"Error updating image status: {e}")
def update_image_embedding_info(image_id: str, point_id: str, model: str):
"""
Update the image with embedding information
Args:
image_id: The ID of the image
point_id: The ID of the point in the Qdrant vector database
model: The model used to generate embeddings
"""
try:
doc_ref = firestore_client.collection('images').document(image_id)
update_data = {
'embedding_point_id': point_id,
'embedding_model': model,
'has_embedding': True
}
doc_ref.update(update_data)
logger.info(f"Updated image {image_id} with embedding info")
except Exception as e:
logger.error(f"Error updating image embedding info: {e}")