2025-05-24 14:26:09 +02:00

414 lines
15 KiB
Markdown

# SEREACT - Secure Image Management API
SEREACT is a secure API for storing, organizing, and retrieving images with advanced search capabilities powered by AI-generated embeddings.
## Features
- Secure image storage in Google Cloud Storage
- Team-based organization and access control
- API key authentication
- **Asynchronous image processing with Pub/Sub and Cloud Functions**
- **AI-powered image embeddings using Google Cloud Vision API**
- **Semantic search using vector similarity in Pinecone**
- **Automatic retry mechanism for failed processing (up to 3 attempts)**
- Metadata extraction and storage
- Image processing capabilities
- Multi-team support
- **Comprehensive E2E testing with real database support**
## Architecture
```
sereact/
├── images/ # Sample images for testing
├── deployment/ # Deployment configurations
│ ├── cloud-function/ # **Cloud Function for image processing**
│ ├── cloud-run/ # Google Cloud Run configuration
│ └── terraform/ # Infrastructure as code
├── docs/ # Documentation
│ ├── api/ # API documentation
│ └── TESTING.md # Comprehensive testing guide
├── scripts/ # Utility scripts
├── src/ # Source code
│ ├── api/ # API endpoints and routers
│ │ └── v1/ # API version 1 routes
│ ├── auth/ # Authentication and authorization
│ ├── config/ # Configuration management
│ ├── core/ # Core application logic
│ ├── db/ # Database layer
│ │ ├── providers/ # Database providers (Firestore)
│ │ └── repositories/ # Data access repositories
│ ├── models/ # Database models
│ ├── schemas/ # API request/response schemas
│ ├── services/ # Business logic services
│ │ └── pubsub_service.py # **Pub/Sub message publishing**
│ └── utils/ # Utility functions
├── tests/ # Test code
│ ├── api/ # API tests
│ ├── auth/ # Authentication tests
│ ├── models/ # Model tests
│ ├── services/ # Service tests
│ ├── integration/ # Integration tests
│ │ └── test_cloud_function.py # **Cloud Function tests**
│ └── test_e2e.py # **Comprehensive E2E workflow tests**
├── main.py # Application entry point
├── requirements.txt # Python dependencies
└── README.md # This file
```
## System Architecture
```
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │
│ FastAPI │ ───────▶│ Firestore │◀────────│ Cloud │
│ Backend │ │ Database │ │ Functions │
│ │ │ │ │ │
└─────┬───────┘ └─────────────┘ └──────┬──────┘
│ │
│ │
▼ │
┌─────────────┐ ┌─────────────┐ │
│ │ │ │ │
│ Cloud │ │ Pub/Sub │ │
│ Storage │────────▶│ Queue │────────────────┘
│ │ │ │
└─────────────┘ └─────────────┘
┌─────────────┐ ┌─────────────┐
│ │ │ │
│ Cloud │ │ Pinecone │
│ Vision API │────────▶│ Vector DB │
│ │ │ │
└─────────────┘ └─────────────┘
```
## **Image Processing Workflow**
### 1. **Image Upload Flow**:
- User uploads image through FastAPI backend
- Image is stored in Google Cloud Storage
- Image metadata is saved to Firestore with `embedding_status: "pending"`
- **Pub/Sub message is published to trigger async processing**
### 2. **Embedding Generation Flow** (Asynchronous):
- **Cloud Function is triggered by Pub/Sub message**
- Function updates image status to `"processing"`
- **Function downloads image from Cloud Storage**
- **Function calls Google Cloud Vision API to generate embeddings**
- **Embeddings are stored in Pinecone Vector Database**
- **Firestore is updated with embedding info and status: "success"**
### 3. **Error Handling & Retry**:
- **Failed processing updates status to "failed" with error message**
- **Automatic retry up to 3 times using Pub/Sub retry policy**
- **Dead letter queue for permanently failed messages**
### 4. **Search Flow**:
- Search queries processed by FastAPI backend
- Vector similarity search performed against Pinecone
- Results combined with metadata from Firestore
## Technology Stack
- **FastAPI** - Web framework
- **Firestore** - Database
- **Google Cloud Storage** - Image storage
- **Google Pub/Sub** - Message queue for async processing
- **Google Cloud Functions** - Serverless image processing
- **Google Cloud Vision API** - AI-powered image analysis and embedding generation
- **Pinecone** - Vector database for semantic search
- **Pydantic** - Data validation
## Setup and Installation
### Prerequisites
- Python 3.8+
- Google Cloud account with Firestore, Storage, Pub/Sub, Cloud Functions, and Vision API enabled
- Pinecone account for vector database
### Installation
1. Clone the repository:
```bash
git clone https://github.com/yourusername/sereact.git
cd sereact
```
2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # Linux/macOS
venv\Scripts\activate # Windows
```
3. Install dependencies:
```bash
pip install -r requirements.txt
```
4. Create a `.env` file with the following environment variables:
```
# Firestore
FIRESTORE_PROJECT_ID=your-gcp-project-id
FIRESTORE_CREDENTIALS_FILE=path/to/firestore-credentials.json
# Google Cloud Storage
GCS_BUCKET_NAME=your-bucket-name
GCS_CREDENTIALS_FILE=path/to/credentials.json
# Google Pub/Sub
PUBSUB_TOPIC=image-processing-topic
PUBSUB_SUBSCRIPTION=image-processing-subscription
# Google Cloud Vision
VISION_API_ENABLED=true
# Security
API_KEY_SECRET=your-secret-key
# Vector database (Pinecone)
VECTOR_DB_API_KEY=your-pinecone-api-key
VECTOR_DB_ENVIRONMENT=your-pinecone-environment
VECTOR_DB_INDEX_NAME=image-embeddings
```
5. **Deploy Infrastructure** (Optional - for production):
```bash
# Deploy Pub/Sub infrastructure with Terraform
cd deployment/terraform
terraform init
terraform plan
terraform apply
# Deploy Cloud Function
cd ../cloud-function
./deploy.sh
```
6. Run the application:
```bash
uvicorn main:app --reload
```
7. Visit `http://localhost:8000/docs` in your browser to access the API documentation.
## **Deployment**
### **Cloud Function Deployment**
The image processing Cloud Function can be deployed using the provided script:
```bash
cd deployment/cloud-function
# Set environment variables
export GOOGLE_CLOUD_PROJECT=your-project-id
export PINECONE_API_KEY=your-pinecone-api-key
export PINECONE_ENVIRONMENT=your-pinecone-environment
# Deploy the function
./deploy.sh
```
### **Infrastructure as Code**
Use Terraform to deploy the complete infrastructure:
```bash
cd deployment/terraform
# Initialize Terraform
terraform init
# Review the deployment plan
terraform plan
# Deploy infrastructure
terraform apply
```
This will create:
- **Pub/Sub topic and subscription with retry policy**
- **Dead letter queue for failed messages**
- **IAM bindings for service accounts**
## API Endpoints
The API provides the following main endpoints:
- `/api/v1/auth/*` - Authentication and API key management
- `/api/v1/teams/*` - Team management
- `/api/v1/users/*` - User management
- `/api/v1/images/*` - **Image upload, download, and management (with async processing)**
- `/api/v1/search/*` - **Image search functionality (semantic search)**
### **Image Processing Status**
Images now include embedding processing status:
```json
{
"id": "image-id",
"filename": "example.jpg",
"embedding_status": "success", // "pending", "processing", "success", "failed"
"embedding_error": null,
"embedding_retry_count": 0,
"has_embedding": true
}
```
Refer to the Swagger UI documentation at `/docs` for detailed endpoint information.
## Development
### Running Tests
```bash
# Run all tests
pytest
# Run specific test categories
pytest tests/services/test_pubsub_service.py # Pub/Sub service tests
pytest tests/integration/test_cloud_function.py # Cloud Function tests
pytest tests/api/test_images_pubsub.py # API integration tests
```
### **Comprehensive End-to-End Testing**
SEREACT includes a comprehensive E2E testing suite that covers complete user workflows with **completely self-contained artificial test data**:
```bash
# Run all E2E tests (completely self-contained - no setup required!)
python scripts/run_tests.py e2e
# Run unit tests only (fast)
python scripts/run_tests.py unit
# Run integration tests (requires real database)
python scripts/run_tests.py integration
```
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## API Modules Architecture
The SEREACT API is organized into the following key modules to ensure separation of concerns and maintainable code:
```
src/
├── api/ # API endpoints and routers
│ └── v1/ # API version 1 routes
├── auth/ # Authentication and authorization
├── config/ # Configuration management
├── models/ # Database models
├── services/ # Business logic services
└── utils/ # Utility functions
```
### Module Responsibilities
#### Router Module
- Defines API endpoints and routes
- Handles HTTP requests and responses
- Validates incoming request data
- Directs requests to appropriate services
- Implements API versioning
#### Auth Module
- Manages user authentication
- Handles API key validation and verification
- Implements role-based access control
- Provides security middleware
- Manages user sessions and tokens
#### Services Module
- Contains core business logic
- Orchestrates operations across multiple resources
- Implements domain-specific rules and workflows
- Integrates with external services (Cloud Vision, Storage)
- Handles image processing and embedding generation
#### Models Module
- Defines data structures and schemas
- Provides database entity representations
- Handles data validation and serialization
- Implements data relationships and constraints
- Manages database migrations
#### Utils Module
- Provides helper functions and utilities
- Implements common functionality used across modules
- Handles error processing and logging
- Provides formatting and conversion utilities
- Implements reusable middleware components
#### Config Module
- Manages application configuration
- Handles environment variable loading
- Provides centralized settings management
- Configures service connections and credentials
- Defines application constants and defaults
### Module Interactions
```
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │
│ Router │ ───────▶│ Services │ ◀───────│ Config │
│ Module │ │ Module │ │ Module │
│ │ │ │ │ │
└──────┬──────┘ └──────┬──────┘ └─────────────┘
│ │
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ │ │ │
│ Auth │ │ Models │
│ Module │ │ Module │
│ │ │ │
└──────┬──────┘ └──────┬──────┘
│ │
│ │
└───────────────────────┘
┌─────────────┐
│ │
│ Utils │
│ Module │
│ │
└─────────────┘
```
The modules interact in the following ways:
- **Request Flow**:
- Client request arrives at the Router Module
- Auth Module validates the request authentication
- Router delegates to appropriate Service functions
- Service uses Models to interact with the database
- Service returns data to Router which formats the response
- **Cross-Cutting Concerns**:
- Config Module provides settings to all other modules
- Utils Module provides helper functions across the application
- Auth Module secures access to routes and services
- **Dependency Direction**:
- Router depends on Services and Auth
- Services depend on Models and Config
- Models depend on Utils for helper functions
- Auth depends on Models for user information
- All modules may use Utils and Config
This modular architecture provides several benefits:
- **Maintainability**: Changes in one module have minimal impact on others
- **Testability**: Modules can be tested in isolation with mocked dependencies
- **Scalability**: New features can be added by extending existing modules
- **Reusability**: Common functionality is centralized for consistent implementation
- **Security**: Authentication and authorization are handled consistently