19 KiB
SEREACT - Secure Image Management API
SEREACT is a secure API for storing, organizing, and retrieving images with advanced search capabilities powered by AI-generated embeddings.
Features
- Secure image storage in Google Cloud Storage
- Team-based organization and access control
- API key authentication
- Asynchronous image processing with Pub/Sub and Cloud Functions
- AI-powered image embeddings using Google Cloud Vision API
- Semantic search using vector similarity with Qdrant Vector Database
- Self-hosted vector database on Google Compute Engine VM
- Automatic retry mechanism for failed processing (up to 3 attempts)
- Metadata extraction and storage
- Image processing capabilities
- Multi-team support
- Comprehensive E2E testing with real database support
Architecture
sereact/
├── images/ # Sample images for testing
├── deployment/ # Deployment configurations
│ ├── cloud-function/ # **Cloud Function for image processing**
│ ├── cloud-run/ # Google Cloud Run configuration
│ └── terraform/ # Infrastructure as code
│ ├── vm.tf # **Vector database VM configuration**
│ └── scripts/ # **VM installation scripts**
├── docs/ # Documentation
│ ├── api/ # API documentation
│ └── TESTING.md # Comprehensive testing guide
├── scripts/ # Utility scripts
├── src/ # Source code
│ ├── api/ # API endpoints and routers
│ │ └── v1/ # API version 1 routes
│ ├── auth/ # Authentication and authorization
│ ├── config/ # Configuration management
│ ├── core/ # Core application logic
│ ├── db/ # Database layer
│ │ ├── providers/ # Database providers (Firestore)
│ │ └── repositories/ # Data access repositories
│ ├── models/ # Database models
│ ├── schemas/ # API request/response schemas
│ ├── services/ # Business logic services
│ │ ├── pubsub_service.py # **Pub/Sub message publishing**
│ │ └── vector_db.py # **Qdrant vector database service**
│ └── utils/ # Utility functions
├── tests/ # Test code
│ ├── api/ # API tests
│ ├── auth/ # Authentication tests
│ ├── models/ # Model tests
│ ├── services/ # Service tests
│ ├── integration/ # Integration tests
│ │ └── test_cloud_function.py # **Cloud Function tests**
│ └── test_e2e.py # **Comprehensive E2E workflow tests**
├── main.py # Application entry point
├── requirements.txt # Python dependencies
└── README.md # This file
System Architecture
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │
│ FastAPI │ ───────▶│ Firestore │◀────────│ Cloud │
│ Backend │ │ Database │ │ Functions │
│ │ │ │ │ │
└─────┬───────┘ └─────────────┘ └──────┬──────┘
│ │
│ │
▼ │
┌─────────────┐ ┌─────────────┐ │
│ │ │ │ │
│ Cloud │ │ Pub/Sub │ │
│ Storage │────────▶│ Queue │────────────────┘
│ │ │ │
└─────────────┘ └─────────────┘
│
│
▼
┌─────────────┐ ┌─────────────┐
│ │ │ │
│ Cloud │ │ Qdrant │
│ Vision API │────────▶│ Vector DB │
│ │ │ (VM) │
└─────────────┘ └─────────────┘
Image Processing Workflow
1. Image Upload Flow:
- User uploads image through FastAPI backend
- Image is stored in Google Cloud Storage
- Image metadata is saved to Firestore with
embedding_status: "pending" - Pub/Sub message is published to trigger async processing
2. Embedding Generation Flow (Asynchronous):
- Cloud Function is triggered by Pub/Sub message
- Function updates image status to
"processing" - Function downloads image from Cloud Storage
- Function calls Google Cloud Vision API to generate embeddings
- Embeddings are stored in Qdrant Vector Database on dedicated VM
- Firestore is updated with embedding info and status: "success"
3. Error Handling & Retry:
- Failed processing updates status to "failed" with error message
- Automatic retry up to 3 times using Pub/Sub retry policy
- Dead letter queue for permanently failed messages
4. Search Flow:
- Search queries processed by FastAPI backend
- Vector similarity search performed against Qdrant VM
- Results combined with metadata from Firestore
Technology Stack
- FastAPI - Web framework
- Firestore - Database
- Google Cloud Storage - Image storage
- Google Pub/Sub - Message queue for async processing
- Google Cloud Functions - Serverless image processing
- Google Cloud Vision API - AI-powered image analysis and embedding generation
- Qdrant - Self-hosted vector database for semantic search (on Google Compute Engine VM)
- Google Compute Engine - VM hosting for vector database
- Pydantic - Data validation
Vector Database Infrastructure
Qdrant Vector Database VM
The system includes a dedicated Google Compute Engine VM running Qdrant vector database:
- VM Specifications: 2 vCPUs, 8GB RAM, 50GB disk (e2-standard-2)
- Operating System: Ubuntu 22.04 LTS
- Vector Database: Qdrant (latest version via Docker)
- Ports: 6333 (HTTP API), 6334 (gRPC API)
- Features:
- Automatic installation and configuration via startup script
- Daily automated backups
- Health monitoring
- Firewall configuration
- Optional static IP assignment
- API key authentication support
Vector Database Features
- High Performance: Optimized for image vector similarity search
- Scalable: Can handle millions of image vectors
- Persistent Storage: Data persisted on VM disk with automated backups
- RESTful API: Easy integration with Python client
- Cosine Similarity: Optimized for image embedding comparisons
- Metadata Filtering: Support for complex search filters
Setup and Installation
Prerequisites
- Python 3.8+
- Google Cloud account with Firestore, Storage, Pub/Sub, Cloud Functions, Compute Engine, and Vision API enabled
- Terraform (for infrastructure deployment)
Installation
-
Clone the repository:
git clone https://github.com/yourusername/sereact.git cd sereact -
Create and activate a virtual environment:
python -m venv venv source venv/bin/activate # Linux/macOS venv\Scripts\activate # Windows -
Install dependencies:
pip install -r requirements.txt -
Create a
.envfile with the following environment variables:# Firestore FIRESTORE_PROJECT_ID=your-gcp-project-id FIRESTORE_CREDENTIALS_FILE=path/to/firestore-credentials.json # Google Cloud Storage GCS_BUCKET_NAME=your-bucket-name GCS_CREDENTIALS_FILE=path/to/credentials.json # Google Pub/Sub PUBSUB_TOPIC=image-processing-topic PUBSUB_SUBSCRIPTION=image-processing-subscription # Google Cloud Vision VISION_API_ENABLED=true # Security API_KEY_SECRET=your-secret-key # Vector database (Qdrant) QDRANT_HOST=your-vm-external-ip QDRANT_API_KEY=your-qdrant-api-key # Optional -
Deploy Infrastructure (Required for vector database):
# Configure Terraform variables cd deployment/terraform cp terraform.tfvars.example terraform.tfvars # Edit terraform.tfvars with your values # Deploy infrastructure including vector database VM terraform init terraform plan terraform apply # Note the output values for VM IP addresses -
Deploy Cloud Function (Optional - for production):
cd ../cloud-function ./deploy.sh -
Run the application:
uvicorn main:app --reload -
Visit
http://localhost:8000/docsin your browser to access the API documentation.
Deployment
Complete Infrastructure Deployment
Deploy the entire infrastructure including the vector database VM:
cd deployment/terraform
# Configure your variables
cp terraform.tfvars.example terraform.tfvars
# Edit terraform.tfvars with your specific values:
# - project_id: Your GCP project ID
# - storage_bucket_name: Unique bucket name
# - qdrant_api_key: Secure API key for Qdrant (optional)
# - allowed_cidr_blocks: Your IP address/range for security
# - use_static_ip: Set to true for production
# Deploy infrastructure
terraform init
terraform plan
terraform apply
This will create:
- Google Compute Engine VM with Qdrant vector database
- Firewall rules for vector database access
- Service accounts and IAM bindings
- Pub/Sub topic and subscription with retry policy
- Cloud Storage bucket
- Firestore database
- Cloud Run service
Vector Database VM Outputs
After deployment, Terraform will output:
vector_db_vm_external_ip: External IP address of the VMqdrant_http_endpoint: HTTP API endpoint for Qdrantqdrant_grpc_endpoint: gRPC API endpoint for Qdrant
Cloud Function Deployment
The image processing Cloud Function can be deployed using the provided script:
cd deployment/cloud-function
# Set environment variables
export GOOGLE_CLOUD_PROJECT=your-project-id
export QDRANT_HOST=your-vm-external-ip
export QDRANT_API_KEY=your-qdrant-api-key
# Deploy the function
./deploy.sh
Vector Database Management
Accessing the Vector Database
# SSH into the VM
gcloud compute ssh sereact-vector-db --zone=us-central1-a
# Check Qdrant status
sudo systemctl status qdrant
# View logs
sudo journalctl -u qdrant -f
# Run health check
sudo /opt/qdrant/health_check.sh
# Manual backup
sudo /opt/qdrant/backup.sh
Vector Database API Usage
from src.services.vector_db import VectorDatabaseService
# Initialize service
vector_db = VectorDatabaseService(
host="your-vm-external-ip",
api_key="your-qdrant-api-key" # Optional
)
# Add image vector
point_id = vector_db.add_image_vector(
image_id="img_123",
vector=[0.1, 0.2, ...], # 512-dimensional vector
metadata={"filename": "image.jpg", "size": 1024}
)
# Search similar images
results = vector_db.search_similar_images(
query_vector=[0.1, 0.2, ...],
limit=10,
score_threshold=0.7
)
API Endpoints
The API provides the following main endpoints:
/api/v1/auth/*- Authentication and API key management/api/v1/teams/*- Team management/api/v1/users/*- User management/api/v1/images/*- Image upload, download, and management (with async processing)/api/v1/search/*- Image search functionality (semantic search via Qdrant)
Image Processing Status
Images now include embedding processing status:
{
"id": "image-id",
"filename": "example.jpg",
"embedding_status": "success", // "pending", "processing", "success", "failed"
"embedding_error": null,
"embedding_retry_count": 0,
"has_embedding": true
}
Refer to the Swagger UI documentation at /docs for detailed endpoint information.
Development
Running Tests
# Run all tests
pytest
# Run specific test categories
pytest tests/services/test_pubsub_service.py # Pub/Sub service tests
pytest tests/services/test_vector_db.py # Vector database tests
pytest tests/integration/test_cloud_function.py # Cloud Function tests
pytest tests/api/test_images_pubsub.py # API integration tests
Comprehensive End-to-End Testing
SEREACT includes a comprehensive E2E testing suite that covers complete user workflows with completely self-contained artificial test data:
# Run all E2E tests (completely self-contained - no setup required!)
python scripts/run_tests.py e2e
# Run unit tests only (fast)
python scripts/run_tests.py unit
# Run integration tests (requires real database)
python scripts/run_tests.py integration
Infrastructure Costs
Estimated Monthly Costs (USD)
- Compute Engine VM (e2-standard-2): ~$50-70/month
- Cloud Storage: $0.02/GB/month
- Firestore: $0.18/100K reads, $0.18/100K writes
- Pub/Sub: $0.40/million messages
- Cloud Functions: $0.40/million invocations
- Cloud Vision API: $1.50/1000 images
Total estimated cost for moderate usage: ~$60-100/month
Cost Optimization Tips
- Use preemptible VM instances for development (50-91% cost reduction)
- Set up automatic VM shutdown during off-hours
- Use regional persistent disks instead of SSD for cost savings
- Monitor and set up billing alerts
License
This project is licensed under the MIT License - see the LICENSE file for details.
API Modules Architecture
The SEREACT API is organized into the following key modules to ensure separation of concerns and maintainable code:
src/
├── api/ # API endpoints and routers
│ └── v1/ # API version 1 routes
├── auth/ # Authentication and authorization
├── config/ # Configuration management
├── models/ # Database models
├── services/ # Business logic services
│ └── vector_db.py # **Qdrant vector database service**
└── utils/ # Utility functions
Module Responsibilities
Router Module
- Defines API endpoints and routes
- Handles HTTP requests and responses
- Validates incoming request data
- Directs requests to appropriate services
- Implements API versioning
Auth Module
- Manages user authentication
- Handles API key validation and verification
- Implements role-based access control
- Provides security middleware
- Manages user sessions and tokens
Services Module
- Contains core business logic
- Orchestrates operations across multiple resources
- Implements domain-specific rules and workflows
- Integrates with external services (Cloud Vision, Storage, Qdrant)
- Handles image processing and embedding generation
Models Module
- Defines data structures and schemas
- Provides database entity representations
- Handles data validation and serialization
- Implements data relationships and constraints
- Manages database migrations
Utils Module
- Provides helper functions and utilities
- Implements common functionality used across modules
- Handles error processing and logging
- Provides formatting and conversion utilities
- Implements reusable middleware components
Config Module
- Manages application configuration
- Handles environment variable loading
- Provides centralized settings management
- Configures service connections and credentials
- Defines application constants and defaults
Module Interactions
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │
│ Router │ ───────▶│ Services │ ◀───────│ Config │
│ Module │ │ Module │ │ Module │
│ │ │ │ │ │
└──────┬──────┘ └──────┬──────┘ └─────────────┘
│ │
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ │ │ │
│ Auth │ │ Models │
│ Module │ │ Module │
│ │ │ │
└──────┬──────┘ └──────┬──────┘
│ │
│ │
└───────────────────────┘
│
▼
┌─────────────┐
│ │
│ Utils │
│ Module │
│ │
└─────────────┘
The modules interact in the following ways:
-
Request Flow:
- Client request arrives at the Router Module
- Auth Module validates the request authentication
- Router delegates to appropriate Service functions
- Service uses Models to interact with the database
- Service integrates with Qdrant Vector Database for similarity search
- Service returns data to Router which formats the response
-
Cross-Cutting Concerns:
- Config Module provides settings to all other modules
- Utils Module provides helper functions across the application
- Auth Module secures access to routes and services
-
Dependency Direction:
- Router depends on Services and Auth
- Services depend on Models and Config
- Models depend on Utils for helper functions
- Auth depends on Models for user information
- All modules may use Utils and Config
This modular architecture provides several benefits:
- Maintainability: Changes in one module have minimal impact on others
- Testability: Modules can be tested in isolation with mocked dependencies
- Scalability: New features can be added by extending existing modules
- Reusability: Common functionality is centralized for consistent implementation
- Security: Authentication and authorization are handled consistently